RAPID: #COVID-19: Understanding Community Response in the Emergence and Spread of Novel Coronavirus through Health Risk Communications in Socio-Technical Systems Grant

RAPID: #COVID-19: Understanding Community Response in the Emergence and Spread of Novel Coronavirus through Health Risk Communications in Socio-Technical Systems .

abstract

  • Risk perception and risk averting behaviors of vulnerable communities in the emergence and spread of COVID-19 are spatio-temporal functions of individual or group interactions with their online social neighbors within or outside their communities and such interactions need to be captured through diverse information channels (e.g. traditional outlets such as radio, television, internet and/or non-traditional outlets such as social media). The primary goal of this Rapid Response Research (RAPID) project is to collect time-sensitive online social media and crowd-sourced data and analyze patterns of health-risk communication and community response in the emergence and spread of novel Coronavirus using data-driven methods and network science theories. The major focus will be towards understanding how individuals are socially influenced online, while communicating risk and interacting in their respective communities as the disease continues to spread. The notion of influence will be captured by quantifying the network effects on such communication behavior and characterizing how information is exchanged among people who are socially connected online and exposed to health risk in such outbreaks of disease. Given that communities responded to COVID-19 with limited or no preparation and there is uncertainty in the length of recovery for the communities already affected while new communities being threatened, the data collection effort requires rapid response for better coverage and careful monitoring. The data will include large-scale ephemeral online interactions of people in the affected communities and public officials who are involved in COVID-19 response, recovery, and mitigation efforts, followed by a data-driven network analytics and infographics of COVID-19 risk communication strategies and risk averting behaviors adopted. The proposed research will not only expand the knowledge base of spatio-temporal dynamics of risk perception and dissemination strategies in the emergence and aftermath of a major disease outbreak, but will also result in data-driven inference techniques to improve our understanding of how people express diverse concerns and how to harness and embed such information for designing intervention measures. The methodologies and findings of this rapid response research will benefit emergency management and public health agencies to define targeted information dissemination policies for public with diverse needs based on how people reacted to COVID-19 and their social network characteristics, activities, and interactions in response to similar public health hazards.Public engagement in risk communication can lead to more effective decision-making and enhanced public feedback to the regulatory process. The primary goal of this RAPID project is to mine and analyze large-scale time-sensitive perishable crowd-sourced and social media data (rich spatio-temporal data) and reveal patterns of health-risk communication and community response in the emergence and spread of novel Coronavirus using data-driven methods and network science theories. The specific aims are threefold: (1) to document how public interact and communicate health risk information through their online social networks during a major disease outbreak; (2) to authenticate data from multiple sources and detect anomalies to avoid information overload and spread of misinformation; and (3) to examine how online social networks influence protective actions (e.g., social distancing, self-quarantine decisions) i.e. information cascades in health risk communication. To achieve the goal and aims, the project will utilize ephemeral time and geo-tagged social media interactions of users, agencies, news sources supplemented with crowd-sourced information on COVID-19. This study will have five theoretical and methodological contributions to the literature. It will: (1) advance our understanding of how individuals are socially influenced online, while communicating health risks and interacting in their respective communities as the disease continues to spread; (2) inform the literature on how information is exchanged among people who are socially connected online and exposed to health risk in such outbreaks of disease; (3) use novel machine-learning and network science models to quantify influence and network effects on such communication behavior; (4) capture the variability in network composition, risk communication strategies and risk averting behaviors adopted based on spatio-temporal correlations of risk and disease contagion; (5) ensure authenticity of the collected data from multiple sources and develop more accurate fully-distributed computational algorithms tailored to health risk anomaly detection in socio-technical systems. The findings from this research will be useful to public health and emergency management agencies for tailoring effective information dissemination policies for diverse user groups based on their social network characteristics, activities, and interactions in response to similar public health hazards. The methodologies, and implications of this research can be transferred in designing effective intervention policies to other natural and man-made disaster contexts in which public health risks become major concerns. The project will engage, mentor, and offer an innovative active learning environment for K-12, undergraduate, and graduate students by giving priority to disadvantaged and underrepresented communities in USA. The project will train students on computational skills required for collecting, storing, processing, analyzing and modeling large-scale data using high performance computational resources.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.

date/time interval

  • May 1, 2020 - April 30, 2022

sponsor award ID

  • 2027360

contributor