Identification of parameters in a system of differential equations modeling evolution of infectious diseases Conference

Hernández, AM, Dulikravich, GS, Blower, S et al. (2008). Identification of parameters in a system of differential equations modeling evolution of infectious diseases . 3(PARTS A AND B), 1057-1066. 10.1115/DETC2008-49595

cited authors

  • Hernández, AM; Dulikravich, GS; Blower, S; Colaco, MJ; Moral, RJ

abstract

  • The objective of this project was to perform an inverse parameter identification study to determine parameter values in a system of ten ordinary differential equations modeling the prediction of the evolutionary spread of syphilis. The goal was to predict infant mortality rates due to syphilis by using this model and match them to actual field data collected in the United States from 1900 to 1970. The syphilis model was developed by the UCLA Disease Modeling Group. The model involves 23 unknown user-specified parameters, each with specified maximum and minimum possible values. An accurate ordinary differential equation system integration algorithm was used to numerically integrate these equations. Copyright © 2008 by ASME.

publication date

  • December 1, 2008

Digital Object Identifier (DOI)

start page

  • 1057

end page

  • 1066

volume

  • 3

issue

  • PARTS A AND B