TSLA: A Task-Specific Learning Adaptation for Semantic Segmentation on Autonomous Vehicles Platform Article

Liu, Jun, Kong, Zhenglun, Zhao, Pu et al. (2025). TSLA: A Task-Specific Learning Adaptation for Semantic Segmentation on Autonomous Vehicles Platform . IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 44(4), 1406-1419. 10.1109/TCAD.2024.3491015

Open Access

cited authors

  • Liu, Jun; Kong, Zhenglun; Zhao, Pu; Zeng, Weihao; Tang, Hao; Shen, Xuan; Yang, Changdi; Zhang, Wenbin; Yuan, Geng; Niu, Wei; Lin, Xue; Wang, Yanzhi

sustainable development goals

authors

publication date

  • April 1, 2025

keywords

  • Accuracy
  • Adaptation models
  • Auto adjustable convolutional kernels
  • Autonomous vehicles
  • Computational efficiency
  • Computational modeling
  • Computer Science
  • Computer Science, Hardware & Architecture
  • Computer Science, Interdisciplinary Applications
  • Computer architecture
  • Engineering
  • Engineering, Electrical & Electronic
  • Hardware
  • MobileNetV4
  • Real-time systems
  • Roads
  • Science & Technology
  • Semantic segmentation
  • Technology
  • classifier depth
  • flexible computational complexity
  • kernel depth
  • scalable depth multiplier
  • scenario-specific-task-specific

Digital Object Identifier (DOI)

publisher

  • IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC

start page

  • 1406

end page

  • 1419

volume

  • 44

issue

  • 4