The Role of NEDD4-1 in Tumorigenesis of the Digestive System Article

Dai, JZ, Jin, Y, Jin, HF. (2022). The Role of NEDD4-1 in Tumorigenesis of the Digestive System . 38(4), 410-417. 10.13865/j.cnki.cjbmb.2021.05.1120

cited authors

  • Dai, JZ; Jin, Y; Jin, HF

authors

abstract

  • Neural precursor cell Expressed‚Developmentally Down-regulated protein 4 (NEDD4-1‚ also known as NEDD4 in some papers) is a tumor-related protein that has attracted much attention in recent years. It belongs to the E3 HECT (homologous to E6 associated protein C terminus) ubiquitin ligase‚ which could ubiquitinate various proteins that are subsequently degraded in lysosomes or proteasomes‚ or mediate their nuclear-cytoplasmic translocation‚ or indirectly affect various signaling pathways of different malignant tumors. With the deepening of a large number of tumor-related experiments‚ it has been found that NEDD4-1 can affect the biological behavior of tumors by regulating cell cycle‚ invasion and metastasis of cancer cells‚ antagonize drug resistance and many other pathways. In digestive system tumors‚ NEDD4-1 mainly promotes the proliferation‚ invasion and migration of hepatocellular carcinoma through multiple pathways such as PTEN/ PI3K/ Akt‚ TGF-β‚ Hippo and LDLRAD4. In pancreatic cancer‚ NEDD4-1 acted as an oncogene in the PI3K/ Akt signaling pathway‚ but acted as a tumor suppressor gene in the Myc-Sirt2 signaling circuit. In gastric and colorectal cancer‚ the NEDD4-1-related signaling pathways are different from other digestive system tumors. NEDD4-1 promotes gastric cancer progression and metastasis (via the EGFR signaling pathway) and inhibits colorectal cancer tumor growth (via the Wnt signaling pathway) independently of the PTEN/ PI3K/ Akt pathway. NEDD4-1 has become a hot research direction for therapeutic purposes. In this paper‚ we summarize the functions‚ signaling pathways and potential inhibitors of NEDD4-1 in different digestive system tumors‚ and discuss the relationship between NEDD4-1 and different signaling pathways‚ aiming to provide important reference data for cancer therapy.

publication date

  • April 20, 2022

Digital Object Identifier (DOI)

start page

  • 410

end page

  • 417

volume

  • 38

issue

  • 4