The fitness consequences of the autotomous blue tail in lizards: An empirical test of predator response using clay models Article

Watson, CM, Roelke, CE, Pasichnyk, PN et al. (2012). The fitness consequences of the autotomous blue tail in lizards: An empirical test of predator response using clay models . ZOOLOGY, 115(5), 339-344. 10.1016/j.zool.2012.04.001

cited authors

  • Watson, CM; Roelke, CE; Pasichnyk, PN; Cox, CL

authors

abstract

  • Numerous vertebrates employ one or more autotomous body parts as an anti-predation mechanism. Many lizards possess an autotomous tail that is brightly colored blue, which has been suggested to either serve as a decoy mechanism to divert predator attention to the autotomous body part, as an interspecific signal, or as an aposematic signal to predators that it is distasteful or dangerous. While theoretical studies suggest that a conspicuous autotomous body part that increases the probability of escape while not increasing the rate of detection will be favorable over a completely cryptic form, there is little empirical evidence supporting the adaptive benefit of an autotomous blue tail. We used in situ clay models of a scincid lizard to test the fitness consequences of blue coloration. Lizard models with a dark base color and blue decoy coloration experienced no measurable difference in avian predation relative to an all-dark model, which suggests that blue coloration neither serves as an aposematic signal nor increases the conspicuousness of the lizard model. Despite statistically similar attack rates, avian attacks on models with blue coloration were indeed focused on body sections that were colored blue. Our results suggest that the blue tail in lizards serves as an effective decoy, and that avian predation has possibly played a role in the evolution of the blue tail. © 2012 Elsevier GmbH.

publication date

  • October 1, 2012

published in

Digital Object Identifier (DOI)

start page

  • 339

end page

  • 344

volume

  • 115

issue

  • 5