Proposed specifications for a lumbar spinal cord electrode array for control of lower extremities in paraplegia
Article
Mushahwar, VK, Horch, KW. (1997). Proposed specifications for a lumbar spinal cord electrode array for control of lower extremities in paraplegia
. 5(3), 237-243. 10.1109/86.623015
Mushahwar, VK, Horch, KW. (1997). Proposed specifications for a lumbar spinal cord electrode array for control of lower extremities in paraplegia
. 5(3), 237-243. 10.1109/86.623015
The goal of the study was to provide specifications for a stimulating electrode array to be implanted in the lumbosacral spinal cord as part of a functional neuromuscular stimulation (FNS) system for control of lower extremity muscles in paralyzed individuals. Dual channel stimulation of the quadriceps activation pool in the feline ventral lumbosacral spinal cord was performed to measure electrode interactions and to explore the effect of various stimulation paradigms on muscle fatigue. There was no measurable overlap in the populations of motor neurons activated from two different electrodes for spacings ≤ 1 mm with currents below 100 μA. However, a statistically significant increase in the population of activated fibers due to current summation was observed when stimuli ≤ 70 μA were simultaneously presented through pairs of electrodes within 3 mm of each other. Fatigue effects were studied with three paradigms: 1) stimuli were delivered through a single electrode, 2) stimuli were delivered through two electrodes with the stimulus to the second electrode presented during the refractory period of fibers stimulated by the first electrode, and 3) stimuli were interleaved between the two electrodes such that the stimulus to one electrode was presented midway between stimuli to the other electrode, and the rate of stimulation through a single electrode was half that used in the first two paradigms. Dual channel refractory and single channel stimulation did not differ from each other in the rate at which the muscle fatigued, in both cases the force decayed to 30% of its initial level within 2 min of the initiation of the stimulation regime, whereas the force with interleaved stimulation was still above the initial force at this time due to strong potentiation. Based on these results and on and activation pool dimensions obtained in an earlier study, preliminary specifications are presented for an electrode array to be implanted in the human spinal cord for functional neuromuscular stimulation.