Inverse determination of steady heat convection coefficient distributions Article

Martin, TJ, Dulikravich, GS. (1998). Inverse determination of steady heat convection coefficient distributions . JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 120(2), 328-334. 10.1115/1.2824251

cited authors

  • Martin, TJ; Dulikravich, GS


  • An inverse Boundary Element Method (BEM) procedure has been used to determine unknown heat transfer coefficients on surfaces of arbitrarily shaped solids. The procedure is noniterative and cost effective, involving only a simple modification to any existing steady-state heat conduction BEM algorithm. Its main advantage is that this method does not require any knowledge of, or solution to, the fluid flow field. Thermal boundary conditions can be prescribed on only part of the boundary of the solid object, while the heat transfer coefficients on boundaries exposed to a moving fluid can be partially or entirely unknown. Over-specified boundary conditions or internal temperature measurements on other, more accessible boundaries are required in order to compensate for the unknown conditions. An ill-conditioned matrix results from the inverse BEM formulation, which must be properly inverted to obtain the solution to the ill-posed problem. Accuracy of numerical results has been demonstrated for several steady two-dimensional heat conduction problems including sensitivity of the algorithm to errors in the measurement data of surface temperatures and heat fluxes. © 1998 by ASME.

publication date

  • January 1, 1998

Digital Object Identifier (DOI)

start page

  • 328

end page

  • 334


  • 120


  • 2