Parameter sensitivity of the Thompson granular retinal damage model Conference

Kennedy, PK, Druessel, JJ, Cupello, JM et al. (1998). Parameter sensitivity of the Thompson granular retinal damage model . SMART BIOMEDICAL AND PHYSIOLOGICAL SENSOR TECHNOLOGY XI, 3254 146-155. 10.1117/12.308160

cited authors

  • Kennedy, PK; Druessel, JJ; Cupello, JM; Till, S; Gerstman, BS; Thompson, CR; Rockwell, BA

abstract

  • As part of a research program to understand and model eye damage produced by exposure to cw and pulsed lasers, the U. S. Air Force has created a granular model of laser retinal damage. The Thompson granular model simulates absorption of light by melanosomes distributed in the retinal pigmented epithelium, melanosome heating, and subsequent photothermal damage from bulk tissue heating. Various biological input parameters required for the model, such as the density, size, spatial distribution, and absorption coefficient of melanosomes, are not well known, creating uncertainty in the results. This problem is being addressed both experimentally, through measurements of biological parameters for various species, and theoretically, through analysis of parameter sensitivity in the model. In the current study, the parameter sensitivity was analyzed using a technique known as "design of experiments," which allows statistical estimation of the relative importance of independent experimental variables. A matrix of 20 cases has been analyzed, using 7 input parameters as independent variables. Cases have been confined to the long pulse regime (≥ 10 μs), where photothermal damage is dominant. Results were assessed using both temperature rise and Arrhenins damage integral values. Corneal fluence was found to be the most important physical parameter and melanosome absorption the most important biological parameter.

publication date

  • December 1, 1998

Digital Object Identifier (DOI)

start page

  • 146

end page

  • 155

volume

  • 3254