Stable blow-up dynamics in the L2-critical and L2-supercritical generalized Hartree equation Article

Yang, Kai, Roudenko, Svetlana, Zhao, Yanxiang. (2020). Stable blow-up dynamics in the L2-critical and L2-supercritical generalized Hartree equation . STUDIES IN APPLIED MATHEMATICS, 145(4), 647-695. 10.1111/sapm.12328

cited authors

  • Yang, Kai; Roudenko, Svetlana; Zhao, Yanxiang

publication date

  • November 1, 2020

published in

keywords

  • Choquard equation
  • EXISTENCE
  • Hartree equation
  • MASS
  • Mathematics
  • Mathematics, Applied
  • NONLINEAR SCHRODINGER-EQUATION
  • NUMERICAL APPROXIMATION
  • Physical Sciences
  • SELF-FOCUSING SINGULARITY
  • SPECTRAL PROPERTY
  • Science & Technology
  • UNIQUENESS
  • adiabatic regime
  • convolution nonlinearity
  • dynamic rescaling
  • log-log blow-up
  • multi-bump profile
  • nonlocal potential

Digital Object Identifier (DOI)

publisher

  • WILEY

start page

  • 647

end page

  • 695

volume

  • 145

issue

  • 4