‘Awake delta’ and theta-rhythmic hippocampal network modes during intermittent locomotor behaviors in the rat Other Scholarly Work

Schultheiss, Nathan, Schlecht, Maximillian, Jayachandran, Maanasa et al. (2019). ‘Awake delta’ and theta-rhythmic hippocampal network modes during intermittent locomotor behaviors in the rat . 10.1101/866962

cited authors

  • Schultheiss, Nathan; Schlecht, Maximillian; Jayachandran, Maanasa; Brooks, Deborah; McGlothan, Jennifer; Guilarte, Tomás; Allen, Timothy


  • Delta-frequency network activity is commonly associated with sleep or behavioral disengagement accompanied by a dearth of cortical spiking, but delta in awake behaving animals is not well understood. We show that hippocampal (HC) synchronization in the delta frequency band (1-4 Hz) is related to animals’ locomotor behavior using a detailed analysis of simultaneous head- and body-tracking data. In contrast to running-speed modulation of the theta rhythm (6-10 Hz, a critical mechanism in navigation models), we observed that strong delta synchronization occurred when animals were stationary or moving slowly and while theta and fast gamma (55-120 Hz) were weak. We next combined time-frequency decomposition of the local field potential with hierarchical clustering algorithms to categorize momentary estimations of the power spectral density (PSD) into putative modes of HC activity. Delta and theta power measures from these modes were notably orthogonal, and theta and delta coherences between HC recording sites were monotonically related to theta-delta ratios across modes. Next, we focused on bouts of precisely-defined running and stationary behavior. Extraction of delta and theta power density estimates for each instance of these bout types confirmed the orthogonality between frequency bands seen across modes. We found that delta-band and theta-band coherence within HC, and in a small sample, between HC and medial prefrontal cortex (mPFC), mirrored delta and theta components of the PSD. Delta-band synchronization often developed rapidly when animals paused briefly between runs, as well as appearing throughout longer stationary bouts. Taken together, our findings suggest that delta-dominated network modes (and corresponding mPFC-HC couplings) represent functionally-distinct circuit dynamics that are temporally and behaviorally interspersed amongst theta-dominated modes during navigation. As such these modes of mPFC-HC circuit dynamics could play a fundamental role in coordinating encoding and retrieval mechanisms or decision-making processes at a timescale that segments event sequences within behavioral episodes.

publication date

  • January 1, 2019

Digital Object Identifier (DOI)