Random forest analysis and lasso regression outperform traditional methods in identifying missing data auxiliary variables when the MAR mechanism is nonlinear (p.s. Stop using Little's MCAR test) Article

Hayes, Timothy, Baraldi, Amanda N, Coxe, Stefany. (2024). Random forest analysis and lasso regression outperform traditional methods in identifying missing data auxiliary variables when the MAR mechanism is nonlinear (p.s. Stop using Little's MCAR test) . BEHAVIOR RESEARCH METHODS, 56(8), 8608-8639. 10.3758/s13428-024-02494-1

cited authors

  • Hayes, Timothy; Baraldi, Amanda N; Coxe, Stefany

sustainable development goals

authors

publication date

  • December 1, 2024

published in

keywords

  • Auxiliary variables
  • INFERENCE
  • Missing at random
  • Missing data
  • Psychology
  • Psychology, Experimental
  • Psychology, Mathematical
  • R PACKAGE
  • Random forest
  • SELECTION
  • Social Sciences

Digital Object Identifier (DOI)

publisher

  • SPRINGER

start page

  • 8608

end page

  • 8639

volume

  • 56

issue

  • 8