ASD-GResTM: Deep Learning Framework for ASD classification using Gramian Angular Field Conference

Almuqhim, F, Saeed, F. (2023). ASD-GResTM: Deep Learning Framework for ASD classification using Gramian Angular Field . 2837-2843. 10.1109/BIBM58861.2023.10385743

cited authors

  • Almuqhim, F; Saeed, F

authors

abstract

  • Autism Spectrum Disorder (ASD) is a heterogeneous disorder in children, and the current clinical diagnosis is accomplished using behavioral, cognitive, developmental, and language metrics. These clinical metrics can be imperfect measures as they are subject to high test-retest variability, and are influenced by assessment factors such as environment, social structure, or comorbid disorders. Advances in neuroimaging coupled with machine-learning provides an opportunity to develop methods that are more quantifiable, and reliable than existing clinical techniques. In this paper, we design and develop a deep-learning model that operates on functional magnetic resonance imaging (fMRI) data, and can classify between ASD and neurotypical brains. We introduce a novel strategy to transform time-series data extracted from fMRI signals into Gramian Angular Field (GAF) while locking in the temporal and spatial patterns in the data. Our motivation is to design and develop a novel framework that could encode the time-series, acquired from fMRI data, into images that can be used by deep-learning architectures that have been successful in computer vision. In our proposed framework called ASD-GResTM, we used a Convolutional Neural Network (CNN) to extract useful features from GAF images. We then used a Long Short-Term Memory (LSTM) layer to learn the activities between the regions. Finally, the output representations of the last LSTM layer are applied to a single-layer perceptron (SPL) to get the final classification. Our extensive experimentation demonstrates high accuracy across 4 centers, and outperforms state-of-the-art models on two centers with an increase in the accuracy of 17.58% and 6.7%, respectively as compared to the state of the art. Our model achieved the maximum accuracy of 81.78% with high degree of sensitivity and specificity. All training, validation, and testing was accomplished using openly available ABIDE-I benchmarking dataset.

publication date

  • January 1, 2023

Digital Object Identifier (DOI)

start page

  • 2837

end page

  • 2843