Allen-Cahn-Navier-Stokes-Voigt Systems with Moving Contact Lines Article

Gal, Ciprian G, Grasselli, Maurizio, Poiatti, Andrea. (2023). Allen-Cahn-Navier-Stokes-Voigt Systems with Moving Contact Lines . JOURNAL OF MATHEMATICAL FLUID MECHANICS, 25(4), 10.1007/s00021-023-00829-0

International Collaboration

cited authors

  • Gal, Ciprian G; Grasselli, Maurizio; Poiatti, Andrea

authors

publication date

  • November 1, 2023

keywords

  • ATTRACTORS
  • BEHAVIOR
  • Conserved Allen-Cahn equation
  • DIFFUSE INTERFACE MODEL
  • Diffuse interface models
  • EQUATIONS
  • Energy identity
  • Existence of solutions
  • Flory-Huggins potential
  • Generalized Navier boundary conditions
  • INCOMPRESSIBLE FLUIDS
  • LIQUID PHASE-SEPARATION
  • Mathematics
  • Mathematics, Applied
  • Mechanics
  • Moving contact lines
  • Navier-Stokes equations
  • Navier-Stokes-Voigt equations
  • Physical Sciences
  • Physics
  • Physics, Fluids & Plasmas
  • REGULARIZED FAMILY
  • Regularization in finite time
  • Science & Technology
  • Strict separation property
  • Technology
  • Uniqueness
  • WEAK SOLUTIONS

Digital Object Identifier (DOI)

publisher

  • SPRINGER BASEL AG

volume

  • 25

issue

  • 4