Identification of Bile Acid-Derived Chemical Chaperone(s) Targeting E46K-Mutated Alpha-Synuclein Protein to Treat Parkinson’s Disease: Molecular Modelling, Docking, ADME, and Simulation Studies Article

Kaur, N, Singh, R, Das, AP et al. (2023). Identification of Bile Acid-Derived Chemical Chaperone(s) Targeting E46K-Mutated Alpha-Synuclein Protein to Treat Parkinson’s Disease: Molecular Modelling, Docking, ADME, and Simulation Studies . APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY, 10.1007/s12010-023-04625-4

cited authors

  • Kaur, N; Singh, R; Das, AP; Agarwal, SM; Dhingra, N; Kaur, T

authors

abstract

  • Aggregated α-synuclein (α-syn) present inside small cytoplasmic inclusions in the substantia nigra region marks the major pathological hallmark of Parkinson’s disease (PD) and makes it an attractive target for the drug development process. Certain small-molecule chaperones (such as DCA, UDCA, TUDCA) presented the ability to prevent misfolding and aggregation of α-syn as well as to disentangle mature α-syn amyloid fibrils. However, due to toxicity constraints, these small molecules could not be translated into clinical settings. Computational biology methods and bioinformatics approaches allow virtual screening of a large number of molecules, with reduced side effects and better efficacy. In the present study, a library of 10,928 derivatives was generated using DCA, UDCA, and TUDCA bile acid scaffolds and analysed for their binding affinity, pharmacokinetic properties, and drug likeliness profile, to come up with promising compounds with reduced toxicity and better chaperone ability. Molecular docking revealed that with respect to their free binding energy, C1–C25 have the lowest binding energy and bind significantly to recombinantly assembled E46K α-syn fibrils (PDB ID-6UFR). In silico ADME predictions revealed that all these compounds had minimal toxic effects and had good absorption as well as solubility characteristics. Simulation studies further showed that the imidazole ring-based TUDCA derivatives interacted better with the protein in comparison to the others. The proposed study has identified potent chemical chaperones (C2 and C3) as effective therapeutic agents for Parkinson’s disease, and further in vitro and in vivo testing will be undertaken to substantiate their potential as novel drugs.

publication date

  • January 1, 2023

Digital Object Identifier (DOI)