Cluster analysis of polymers using laser-induced breakdown spectroscopy with K-means Article

Guo, Y, Tang, Y, Du, Y et al. (2018). Cluster analysis of polymers using laser-induced breakdown spectroscopy with K-means . 20(6), 10.1088/2058-6272/aaaade

cited authors

  • Guo, Y; Tang, Y; Du, Y; Tang, S; Guo, L; Li, X; Lu, Y; Zeng, X

authors

abstract

  • Laser-induced breakdown spectroscopy (LIBS) combined with K-means algorithm was employed to automatically differentiate industrial polymers under atmospheric conditions. The unsupervised learning algorithm K-means were utilized for the clustering of LIBS dataset measured from twenty kinds of industrial polymers. To prevent the interference from metallic elements, three atomic emission lines (C i 247.86 nm , H i 656.3 nm, and O i 777.3 nm) and one molecular line C-N (0, 0) 388.3 nm were used. The cluster analysis results were obtained through an iterative process. The Davies-Bouldin index was employed to determine the initial number of clusters. The average relative standard deviation values of characteristic spectral lines were used as the iterative criterion. With the proposed approach, the classification accuracy for twenty kinds of industrial polymers achieved 99.6%. The results demonstrated that this approach has great potential for industrial polymers recycling by LIBS.

publication date

  • June 1, 2018

Digital Object Identifier (DOI)

volume

  • 20

issue

  • 6