Application of Atmospheric Solids Analysis Probe Mass Spectrometry (ASAP-MS) in Petroleomics: Analysis of Condensed Aromatics Standards, Crude Oil, and Paraffinic Fraction Article

Tose, LV, Murgu, M, Vaz, BG et al. (2017). Application of Atmospheric Solids Analysis Probe Mass Spectrometry (ASAP-MS) in Petroleomics: Analysis of Condensed Aromatics Standards, Crude Oil, and Paraffinic Fraction . JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY, 28(11), 2401-2407. 10.1007/s13361-017-1764-2

cited authors

  • Tose, LV; Murgu, M; Vaz, BG; Romão, W

abstract

  • Atmospheric solids analysis probe mass spectrometry (ASAP-MS) is a powerful tool for analysis of solid and liquid samples. It is an excellent alternative for crude oil analysis without any sample preparation step. Here, ASAP-MS in positive ion mode, ASAP(+)-MS, has been optimized for analysis of condensed aromatics (CA) standards, crude oil, and paraffinic fraction samples using a Synapt G2-S HDMS. Initially, two methodologies were used to access the chemical composition of samples: (1) using a temperature gradient varying from 150 to 600 °C at a heating rate of 150 °C min –1 , and (2) with constant temperature of 300 and 400 °C. ASAP(+)-MS ionized many compounds with a typical petroleum profile, showing a greater signals range of m/z 250–1300 and 200–1400 for crude oil and paraffin samples, respectively. Such performance, mainly related to the detection of high molecular weight compounds (>1000 Da), is superior to that of other traditional ionization sources, such as ESI, APCI, DART, and DESI. Additionally, the CA standards were identified in both forms: radicals, [M] +• , and protonated cations, [M + H] + , with minimum fragmentation. Therefore, ASAP was more efficient in accessing the chemical composition of nonpolar and polar compounds. It is promising in its application with ultrahigh resolution MS instruments, such as FT-ICR MS and Orbitrap, since molecular formulas with greater resolution and mass accuracy (<1 ppm) would be assigned. [Figure not available: see fulltext.].

publication date

  • November 1, 2017

Digital Object Identifier (DOI)

start page

  • 2401

end page

  • 2407

volume

  • 28

issue

  • 11