Mutations in ubiquilin 2 (Ubqln2) is linked to amyotrophic lateral sclerosis and frontotemporal lobar degeneration. A foremost question regarding Ubqln2 pathogenesis is whether pathogenically mutated Ubqln2 causes neuron death via a gain or loss of functions. To better understand Ubqln2 pathobiology, we created Ubqln2 transgenic and knockout rats and compared phenotypic expression in these novel rat models. Overexpression of Ubqln2 with a pathogenic mutation (P497H substitution) caused cognitive deficits and neuronal loss in transgenic rats at the age of 130 days. In the transgenic rats, neuronal loss was preceded by the progressive formation of Ubqln2 aggregates and was accompanied by the progressive accumulation of the autophagy substrates p62 and LC3-II and the impairment of endosome pathways. In contrast, none of these pathologies observed in mutant Ubqln2 transgenic rats was detected in Ubqln2 knockout rats at the age of 300 days. Together, our findings in Ubqln2 transgenic and knockout rats collectively suggest that pathogenic Ubqln2 causes neuron death mainly through a gain of unrevealed functions rather than a loss of physiological functions.