A representative, low-temperature gas-phase reaction mechanism synthesizing polyacenes via ring annulation exemplified by the formation of pentacene (C22H14) along with its benzo[a]tetracene isomer (C22H14) is unraveled by probing the elementary reaction of the 2-tetracenyl radical (C18H.11) with vinylacetylene (C4H4). The pathway to pentacene—a prototype polyacene and a fundamental molecular building block in graphenes, fullerenes, and carbon nanotubes—is facilitated by a barrierless, vinylacetylene mediated gas-phase process thus disputing conventional hypotheses that synthesis of polycyclic aromatic hydrocarbons (PAHs) solely proceeds at elevated temperatures. This low-temperature pathway can launch isomer-selective routes to aromatic structures through submerged reaction barriers, resonantly stabilized free-radical intermediates, and methodical ring annulation in deep space eventually changing our perception about the chemistry of carbon in our universe.