Testing k-wise and almost k-wise independence Conference

Alon, N, Andoni, A, Kaufman, T et al. (2007). Testing k-wise and almost k-wise independence . 496-505. 10.1145/1250790.1250863

cited authors

  • Alon, N; Andoni, A; Kaufman, T; Matulef, K; Rubinfeld, R; Xie, N

authors

abstract

  • In this work, we consider the problems of testing whether adistribution over (0,1 n) is k-wise (resp. (,k)-wise) independentusing samples drawn from that distribution. For the problem of distinguishing k-wise independent distributions from those that are -far from k-wise independence in statistical distance, we upper bound the number ofrequired samples by (n k/ 2) and lower bound it by (n k-1/2/) (these bounds hold for constantk, and essentially the same bounds hold for general k). Toachieve these bounds, we use Fourier analysis to relate adistribution's distance from k-wise independence to its biases, a measure of the parity imbalance it induces on a setof variables. The relationships we derive are tighter than previouslyknown, and may be of independent interest. To distinguish (,k)-wise independent distributions from thosethat are -far from (,k)-wise independence in statistical distance, we upper bound thenumber of required samples by O(k log n / 22) and lower bound it by ( k log n / 2 k(+) log 1/2 k(+)). Although these bounds are anexponential improvement (in terms of n and k) over thecorresponding bounds for testing k-wise independence, we give evidence thatthe time complexity of testing (,k)-wise independence isunlikely to be poly(n,1/,1/) for k=(log n),since this would disprove a plausible conjecture concerning the hardness offinding hidden cliques in random graphs. Under the conjecture, ourresult implies that for, say, k = log n and = 1 / n 0.99,there is a set of (,k)-wise independent distributions, and a set of distributions at distance =1/n 0.51 from (,k)-wiseindependence, which are indistinguishable by polynomial time algorithms. Copyright 2007 ACM.

publication date

  • October 30, 2007

Digital Object Identifier (DOI)

International Standard Book Number (ISBN) 10

International Standard Book Number (ISBN) 13

start page

  • 496

end page

  • 505