Having access to a large set of stories is a necessary first step for robust and wide-ranging computational narrative modeling; happily, language data-including stories-are increasingly available in electronic form. Unhappily, the process of automatically separating stories from other forms of written discourse is not straightforward, and has resulted in a data collection bottleneck. Therefore researchers have sought to develop reliable, robust automatic algorithms for identifying story text mixed with other non-story text. In this paper we report on the reimplementation and experimental comparison of the two approaches to this task: Gordon's unigram classifier, and Corman's semantic triplet classifier. We cross-analyze their performance on both Gordon's and Corman's corpora, and discuss similarities, differences, and gaps in the performance of these classifiers, and point the way forward to improving their approaches.