HEAT SPREADERS FOR HIGH-POWER ELECTRONICS EMPLOYING BOILING MECHANISMS IN A NARROW SPACE Conference

Gao, M, Cao, Y. (1998). HEAT SPREADERS FOR HIGH-POWER ELECTRONICS EMPLOYING BOILING MECHANISMS IN A NARROW SPACE . 1998-C 503-508. 10.1115/IMECE1998-0879

cited authors

  • Gao, M; Cao, Y

authors

abstract

  • To achieve a high heat-flux level and reduce manufacturing costs associated with conventional heat pipes, the concept of network heat spreaders employing boiling heat-transfer mechanism in a narrow space has been proposed and several flat-plate wickless heat spreaders have been designed and fabricated. The heat spreaders have been tested under different working conditions and orientations relative to the gravity with very good results. The previously tested network heat spreaders, however, were based on plates with a relatively large size for general heat spreading purposes. In the present study, network heat spreaders with overall dimensions of 78x62x3.2 mm are designed and fabricated. The spreaders with this size are intended for use as heat sinks of high-power electronic components. External cooling fins are attached to enhance air-cooling heat transfer rate. The network heat spreaders are tested under various working conditions with water as the working fluid. The maximum heat input rate achieved is about 150 W with a corresponding heat flux of 60 W/cm2. Compared to the performance of a solid copper plate having the same overall size as the spreader, the maximum temperature difference over the surface is reduced from about 32 °C to 3.3 °C. The heat transfer performance of the spreader is also largely dependent on the filling ratio of the working fluid and the boiling heat transfer in the narrow space. For these reasons, boiling heat transfer mechanisms in a narrow space are analyzed, and a spreader design that would improve the performance in a horizontal position is described.

publication date

  • January 1, 1998

Digital Object Identifier (DOI)

International Standard Book Number (ISBN) 13

start page

  • 503

end page

  • 508

volume

  • 1998-C